University
of Glasgow

VA YIRTAL A

Software Engineering IT “SEIT” Course

* A course offered by Information Technology (IT) Postgraduate Program;

* Students taking the course come from disciplines other than
Computer Science and Engineering;

* Aims to teach basic concepts of software engineering;
* ~310 students enrolled (for the academic year 2022/2023).

» Course runs throughout two semesters spread throughout the entire
academic year.

SEIT Course Intended Learning Outcomes (ILOs)

|:| Carry out a requirements analysis and write requirements
specification;

D Create UML diagrams which model aspects of the domain and
the software solution;

D AIC>IC>|y deS|gn prmmples and pattesle deS|gn|gan
| 'mplementlng S|mple software systems

_— - — - = — — ‘——“— - — _ — —— e

- ==

I_:l Carry out software testing;

D Apply project management techniques.

SEIT Course Intended Learning Outcomes (ILOs)

. o
Coupling types: Cohesion types:
e content coupling e Coincidental/utility cohesion (usually bad)
e control coupling e Sequential/procedural/temporal cohesion
« ©® Stamp coupling ® Functional cohesion (best)
\)636 <7 o data coupling ° ...
(\o ° ...

D Apply deS|gn prmmples and patrns whlle deS|| 1‘
~implementing simple software systems;

B e —— — - = — — "A—" - — _ — —— e

Refactoring Code (Low Coupling & High Cohesion)

How did we teach refactoring
code for low coupling and high
cohesion?

Refactoring Code (Low Coupling & High Cohesion)

Fall 2021 - Spring 2022
2021 2022 2023

Online Lectures
Stamp Coupling

= More information /features is passed between components than is needed
= Gives too much power to the other component

= For languages that copy parameters, can hurt performance

// Usually you don't want public here; just for the exzample!

class UserAccount { public String name; public int accBalance }

class View {
public void displayName (UserAccount u) A
// Why is the displayName function allowed to do this!
// Does it need to know about balances?
u.accBalance += 100000;

System.out.println(u.name) ;

Ik
!

Refactoring Code (Low Coupling & High Cohesion)

Fall 2022 - Spring 2023
2023 2022 2023 2024

...... “

Live Refactoring Session

©Q O O
[[{ |

Coding Labs

Live Refactoring Session

The teachers improves some code and students follow:
 An example based on “Theatrical Players Refactoring Kata”
e Code to generate invoices for companies attending plays

 Code Katas are exercises to improve SE skills and learn new
techniques

e Available online: https://qgithub.com/ythirion/Theatrical-Players-
Refactoring-Kata

https://github.com/ythirion/Theatrical-Players-Refactoring-Kata
https://github.com/ythirion/Theatrical-Players-Refactoring-Kata
https://github.com/ythirion/Theatrical-Players-Refactoring-Kata

Live Refactoring: Example Improvements

ldentify and remove content coupling

Theatrical Players: Data Control

StatementPrinter

+print(Invoice, Map<String, Play> plays)

= Lots of public data
= Coupling directly to data (data

Coupling) Invoice Play
B NO access Control +List performances +String type
+Invoice(customer, performances) +Play(name, type)
= Not clear we ever want to update 1 P 4 P
Play or Invoices J(

= |mmutable data? Performance
+String playld

+1int audience

+Performance(id, audience)

Live Refactoring: Example Improvements

ldentify and remove content coupling

Theatrical Players: Data Control

Theatrical Players: Data Control via Getters

StatementPrinter

+print(Invoice, Map<String, Play> plays)

StatementPrinter
+print(Invoice, Map<String, Play> plays)
= Lots of public data
= Coupling directly to data (data Invoice
. : -String customer -String name
cou p||ng) e Ry -List performances -String type
+St.r1ng . +Str.1ng o +Invoice(customer, performances +Plav(name. type
= NO dCCESS ContrOI HLISt performances FouTg fype +String getCustomer() +String getName()
+Invoice(customer, performances) +Play(name, type) 4+ ist getPerformances +String cetTvpe
= Not clear we ever want to update P 4 -2
Play or Invoices J(J(
g Immutable data? , Peifetinancs Performance

-String playld

+String playld , .
-int audience

+1int audience

+Performance(id, audience)

+String getPlay()
+int getAudienceSize()

Live Refactoring: Example Improvements

ldentity and remove control coupling

Theatrical Players: Types as Variables

StatementPrinter

+print(Invoice, Map<String, Play> plays)

\

= String type in Play is worrying! Invoice Play
. - [* “ -String customer -String nam
= |f the object has a specific type in L sk merfammanons
L +Invoice(customer, performances) +Play(name, type)
+String getCustomer() +String getName()
the real-world . e
= Why doesnvt |t have 3 type in our +List getPerformances() +String getType()
program? J(
Performance

-String playld
-int audience

+Performance(id, audience)
+String getPlay()
+int getAudienceSize()

Live Refactoring: Example Improvements

ldentity and remove control coupling

Theatrical Players: Types as Variables

Theatrical Players: Sub-classing Play

StatementPrinter
StatementPrinter

+print(Invoice, Map<String, Play> plays)

+print(Invoice, Map<String, Play> plays)

. Play
. . - . : Invoice
= String type in Play is worrying! Invoice Play T — Ty —
; “ p g -String customer St an.c g et o -String type
= -List f
= If the object has a specific type in | List performances L perloranees e —
; +Invoice(customer, performances) +Stri}1,1 etl\i a?lfe()
the rea|—W0r|d +InV.01ce(cust0mer,performances) +Play(name,type) +String getCustomer() o g% -
+String getCustomer() +String getName() +List getPerformances() +String get ype() .
o B . +List getPerformances() +String getType() +int getCost(int audienceNumber)
= Why doesn't it have a type in our =
program?
Peifformance Performance
~String playId -String playld

-int audience -int audience TragedyPlay ComedyPlay

+Performance(id, audience) +int getCost(int audienceNumber) +int getCost(int audienceNumber)
+String getPlay()
+int getAudienceSize()

+Performance(id, audience)
+String getPlay()
+int getAudienceSize()

Student Feedback on Live Refactoring Session

There are
many examples of code
demonstrations in class which
makes It easier for us to

understand the content.

\

Live coding Is really really
helpful no matter for beginner or
advanced programmer

\

Student Feedback on Live Refactoring Session

More Live Codin
J We did one “live coding”

session. We would like to see
more live coding session.

\

[Response to “How could this cause
be improved?”]

\

Refactoring Code (Low Coupling & High Cohesion)

Fall 2023 - Spring 2024
2023 2022 2023 2024

...... “
?

Refactoring Code (Low Coupling & High Cohesion)

Fall 2023 - Spring 2024
2023 2022 2023 2024

...... m

How about an
Interactive
coding session
that employs
scaffolding?

Interactiveness

Conditions for Intuitive Expertise

Importance of instance feedback

in learning:

e Humans are more likely to learn
and become experts when the
environment is regular (i.e.,
feedback is not delayed or
sparse).

A Failure to Disagree

Daniel Kahneman
Gary Klein

Princeton University

Applied Research Associates

This article reports on an effort to explore the differences
between two approaches to intuition and expertise that are
often viewed as conflicting: heuristics and biases (HB) and
naturalistic decision making (NDM). Starting from the
obvious fact that professional intuition is sometimes mar-
velous and sometimes flawed, the authors attempt to map
the boundary conditions that separate true intuitive skill
from overconfident and biased impressions. They conclude
that evaluating the likely quality of an intuitive judgment
requires an assessment of the predictability of the environ-
ment in which the judgment is made and of the individual’s
opportunity to learn the regularities of that environment.
Subjective experience is not a reliable indicator of judg-
ment accuracy.

Keywords: intuition, expertise, overconfidence, heuristics,
judgment

n this article we report on an effort to compare our

views on the issues of intuition and expertise and to

discuss the evidence for our respective positions. When
we launched this project, we expected to disagree on many
issues, and with good reason: One of us (GK) has spent
much of his career thinking about ways to promote reliance
on expert intuition in executive decision making and iden-
tifies himself as a member of the intellectual community of
scholars and practitioners who study naturalistic decision
making (NDM). The other (DK) has spent much of his
career running experiments in which intuitive judgment
was commonly found to be flawed: he is identified with the
“heuristics and biases” (HB) approach to the field.

A surprise awaited us when we got together to con-
sider our joint field of interest. We found ourselves agree-
ing most of the time. Where we initially disagreed, we were
usually able to converge upon a common position. Our
shared beliefs are much more specific than the common-
place that expert intuition is sometimes remarkably accu-
rate and sometimes off the mark. We accept the common-
place, of course, but we also have similar opinions about
more specific questions: What are the activities in which
skilled intuitive judgment develops with experience? What
are the activities in which experience is more likely to
produce overconfidence than genuine skill? Because we
largely agree about the answers to these questions we also
favor generally similar recommendations to organizations
seeking to improve the quality of judgments and decisions.
In spite of all this agreement, however, we find that we are

still separated in many ways: by divergent attitudes, pref-
erences about facts, and feelings about fighting words such
as “bias.” If we are to understand the differences between
our respective communities, such emotions must be taken
into account.

We begin with a brief review of the origins and
precursors of the NDM and HB approaches, followed by a
discussion of the most prominent points of contrast be-
tween them (NDM: Klein, Orasanu, Calderwood, & Zsam-
bok, 1993; HB: Gilovich, Griffin, & Kahneman, 2002;
Tversky & Kahneman, 1974). Next we present some claims
about the conditions under which skilled intuitions de-
velop, followed by several suggestions for ways to improve
the quality of judgments and choices.

Two Perspectives

Origins of the Naturalistic Decision
Making Approach

The NDM approach, which focuses on the successes
of expert intuition, grew out of early research on master
chess players conducted by deGroot (1946/1978) and later
by Chase and Simon (1973). DeGroot showed that chess
grand masters were generally able to identify the most
promising moves rapidly, while mediocre chess players
often did not even consider the best moves. The chess
grand masters mainly differed from weaker players in their
unusual ability to appreciate the dynamics of complex
positions and quickly judge a line of play as promising or
fruitless. Chase and Simon (1973) described the perfor-
mance of chess experts as a form of perceptual skill in
which complex patterns are recognized. They estimated
that chess masters acquire a repertoire of 50,000 to 100,000
immediately recognizable patterns, and that this repertoire
enables them to identify a good move without having to
calculate all possible contingencies. Strong players need a
decade of serious play to assemble this large collection of
basic patterns, but of course they achieve impressive levels

Daniel Kahneman, Woodrow Wilson School of Public and International
Affairs, Princeton University; Gary Klein, Applied Research Associates,
Fairborn, Ohio.

We thank Craig Fox, Robin Hogarth, and James Shanteau for their
helpful comments on earlier versions of this article.

Correspondence concerning this article should be addressed to Daniel
Kahneman, Woodrow Wilson School of Public and International Affairs,
Princeton University, Princeton, NJ 08544-0001. E-mail: kahneman@
princeton.edu

September 2009 » American Psychologist

© 2009 American Psychological Association 0003-066X/09/512.00
Vol. 64, No. 6, 515-526 DOI: 10.1037/a0016755

515

Scaffolding

® One primary obstacle in . .
. . Programming logic
teaching coding-related Syntax
el : : : Language interface
activities to novices is teaching .
Algorithms

syntax?. Flowcharts

e Scaffolding tools facilitate @ Pseudocode
novices’ syntactical proficiencyl.

Instructional scaffolding comprises support the teacher gives students

throughout the learning process, which the teacher gradually removes
as students develop autonomous learning strategies?.

1 Al-Imamy, S., Alizadeh, J. & Nour, M. (2006). On the Development of a Programming Teaching Tool: The Effect of Teaching by Templates on the Learning Process. Journal of Information Technology Education, 5,
2 Beed, P, Hawkins, M., & Roller, C. (1991). Moving learners towards independence: the power of scaffolded instruction. The Reading Teacher, 44(9), 648—655.

Example Interactive Refactoring Session

(1) Read through the Java code below and execute the code to familirise yourself

U SI n g J U p iter (2) Use QR code to answer the following questions:
N Ote bOO kS tO E n S u re : YXTI?; ijaflzn;::i‘; gz‘llo‘zvmi‘dggntify the lines with content coupling?
Interactiveness

Employing Scaffolding

(3) Now let's remove the data coupling in the code (I will start with one instance and then you continue).

In [19]: import java.io.PrintStream;

public class Person {

public Person(String n, int d, int m, int y){ |ncrease |n taSk

name = n;
dob_d = d;

dobn = complexity & students’
s autonomy

boss = null;
worker = null;
nworkers = 0;

public void print(PrintStream ps) {

ps.print(String.format("%s: born on %02d/%02d/%4d", name, dob_d, dob_m, dob_y))
if (type == 1) {

ps.print(" bosses: ");

for (int 1 = 0; i < nworkers; i++)

ps.print(worker[i].name+" ");

+
else

ps.print(" is bossed by "+boss.name);

public String name;

public int dob_d, dob_m, dob_y; // date of birth
public int type; // 1 = Boss, 2 = Worker

public Person boss;

public Person[] worker;

public int nworkers;

In [29]: Person wl
Person w2
Person w3

new Person('"aaa", 1, 2, 1991); wl.type
new Person("bbb", 3, 4, 1993); w2.type
new Person('"ccc", 5, 6, 1995); w3.type

LI | B |
NNN

®— g D ——Y P 2T T T ®T®I®T —— T e 17 O e S ® .

Refactoring Code (Low Coupling & High Cohesion)

|Fall 2021 - Spring 2022,
2021 2022 2023 2024

Online Lectures
Stamp Coupling

» More information /features is passed between components than is needed
« Gives too much power to the other component
= For languages that copy parameters, can hurt performance

asx UserAceount { public String mame; public int mecBalance)

Coding Labs

clas: 1w {
public d Uner count u
u.accBalance 100000
<
J(I); JO)

Refactoring Code (Low Coupling & High Cohesion)

Fall 2022 - Spring 2023
2023 2022 2023 2024

Live Refactoring Session

A=)
alimla

Coding Labs

w!
<y o>

Refactoring Code (Low Coupling & High Cohesion)

Fall 2023 - Spring 2024
2023 2022 2023 2024

...... m

How about an
interactive
coding session
that employs

scaffolding?

Interactiveness

Conditions for Intuitive Expertise

Importance of instance feedback A Faiur o Diagree

Kaveana

in learning:

e Humans are more likely to learn
and become experts when the
environment is regular (i.e.,
feedback is not delayed or
sparse).

The icons used in this presentation
are part of Flaticon

https://www.flaticon.com/

Scaffolding

® One primary obstacle in . -
5 : Programming logic
teaching coding-related Syntax
i ey A A ; Language interface
activities to novices is teaching .
‘ Algorithms
syntax?. Flowcharts 'Q' _
e Scaffolding tools facilitate > @ Pseudocode
novices’ syntactical proficiency?!.

Instructional scaffolding comprises support the teacher gives students
throughout the learning process, which the teacher gradually removes
as students develop autonomous learning strategies2.

1 Al-imamy, S., Alizadeh, J. & Nour, M. (2006). On the D of a Progr q g Tool: The Effect of Teaching by Templates on the Leaming Process. Journal of Information Technology Education, 5,
2 Beed, P., Hawkins, M., & Roller, C. (1991). Moving learners towards independence: the power of scaffolded instruction. The Reading Teacher, 44(9), 648—655.

Example Interactive Refactoring Session

(1) Read through the Java code below and emcute the code to faminse yourself

Using Jupiter (2) Usa CR coda 10 anawse tha 1a10wing Questions:
Notebooks to Ensure o Wi e Sors ek Eanity the inoa wth cortent couping?
Interactiveness =

Employing Scaffolding

§3) Now let's remanm the data couping in the code § will st with are instanca and then you cansnue).
In 119]): 4mport java.io.PrintStreanm;

poblic closs Person {
public Person(Steing n, int @, Int o, int y){
name = n;

increase in task
complexity & students’

autonomy

020/402d/%4¢", name, dob_d, dob_m, dob_y))

public String na
public int dob_d, dob_m, dob_y [
public int type; // 1 = &
public Person boss
public Personl)
public int nworl
}
In 129]: Person wl = mew Person(“asa”, 199113 wl.type =
Persco w2 = new Person(“bbb*, 3 1993); W2, type =
Person wl = new Pel {*"cce” 6, 199515 w3.type =

Teaching non-CS Students Software Engineering Basics:

Gul Galikli, Ph.D.

University of Glasgow

