
Teaching Non-CS Students 
Software Engineering Basics

Gül Calikli, Ph.D.

Teaching non-CS Students Software Engineering Basics 
Gül Calikli, Ph.D.



Software Engineering IT “SEIT” Course 
• A course offered by Information Technology (IT) Postgraduate Program;


• Students taking the course come from disciplines other than 
Computer Science and Engineering;


• Aims to teach basic concepts of software engineering;


• ~310 students enrolled (for the academic year 2022/2023).


• Course runs throughout two semesters spread throughout the entire 
academic year.



Carry out a requirements analysis and write  requirements 
specification;

Create UML diagrams which model aspects of the domain and 
the software solution;

Apply design principles and patterns while designing and 
implementing simple software systems;

Carry out software testing;

Apply project management techniques. 

SEIT Course Intended Learning Outcomes (ILOs) 



Carry out a requirements analysis and write  requirements 
specification;
Create UML diagrams which model aspects of the domain 
and the software solution;

Apply design principles and patterns while designing and 
implementing simple software systems;

Carry out software testing;

Apply project management techniques. 

SEIT Course Intended Learning Outcomes (ILOs) 

includes

Coupling types: 
• content coupling 
• control coupling 
• stamp coupling 
• data coupling 
• … 

Cohesion types: 
• Coincidental/utility cohesion (usually bad)  
• Sequential/procedural/temporal cohesion 
• Functional cohesion (best) 
• … 



Refactoring Code (Low Coupling & High Cohesion)

How did we teach refactoring 
code for low coupling and high 

cohesion?



Refactoring Code (Low Coupling & High Cohesion)

……

2021 2022 2023 2024
Fall 2021 - Spring 2022

Online Lectures

Coding Labs



Refactoring Code (Low Coupling & High Cohesion)

……

202320222023 2024
Fall 2022 - Spring 2023

Coding Labs

Live Refactoring Session



Live Refactoring Session
The teachers improves some code and students follow:


• An example based on “Theatrical Players Refactoring Kata”


• Code to generate invoices for companies attending plays


• Code Katas are exercises to improve SE skills and learn new 
techniques


• Available online: https://github.com/ythirion/Theatrical-Players-
Refactoring-Kata

https://github.com/ythirion/Theatrical-Players-Refactoring-Kata
https://github.com/ythirion/Theatrical-Players-Refactoring-Kata
https://github.com/ythirion/Theatrical-Players-Refactoring-Kata


Live Refactoring: Example Improvements
Identify and remove content coupling



Live Refactoring: Example Improvements
Identify and remove content coupling



Live Refactoring: Example Improvements
Identify and remove control coupling



Live Refactoring: Example Improvements
Identify and remove control coupling



Student Feedback on Live Refactoring Session

There are 
many examples of code 

demonstrations in class which 
makes it easier for us to 
understand the content.

Live coding is really really 
helpful no matter for beginner or 

advanced programmer



Student Feedback on Live Refactoring Session

There are 
many examples of code 

demonstrations in class which 
makes it easier for us to 
understand the content.

Live coding is really really 
helpful no matter for beginner or 

advanced programmer

More Live Coding


[Response to “How could this cause 
be improved?”]

We did one “live coding” 
session. We would like to see 

more live coding session. 



Refactoring Code (Low Coupling & High Cohesion)

……

202320222023 2024

Fall 2023 - Spring 2024

?



Refactoring Code (Low Coupling & High Cohesion)

……

202320222023 2024

Fall 2023 - Spring 2024

How about an 
interactive 

coding session 
that employs 
scaffolding?



Interactiveness
Importance of instance feedback 
in learning: 
• Humans are more likely to learn 

and become experts when the 
environment is regular (i.e., 
feedback is not delayed or 
sparse). 



Scaffolding
• One primary obstacle in 

teaching coding-related 
acCviCes to novices is teaching 
syntax1. 

• Scaffolding tools facilitate 
novices’ syntacCcal proficiency1.

Programming logic
Syntax

Language interface
Algorithms

Flowcharts
Pseudocode

 Instruc)onal scaffolding comprises support the teacher gives students 
throughout the learning process, which the teacher gradually removes 
as students develop autonomous learning strategies2. 

1  Al-Imamy, S., Alizadeh, J. & Nour, M. (2006). On the Development of a Programming Teaching Tool: The Effect of Teaching by Templates on the Learning Process. Journal of Information Technology Education, 5, 1-13.  
2  Beed, P., Hawkins, M., & Roller, C. (1991). Moving learners towards independence: the power of scaffolded instrucCon. The Reading Teacher, 44(9), 648–655. 



Using Jupiter 
Notebooks to Ensure 
Interactiveness 
Employing Scaffolding 

increase in  task 
complexity & students’


 autonomy 



Teaching non-CS Students Software Engineering Basics: 
Gül Çalikli, Ph.D.

   

University of Glasgow    

                       The icons used in this presentation 

are part of Flaticon
https://www.flaticon.com/


