
WMSEE 2023

Covey.Town: An Integrated
Student Project Sequence
Jonathan Bell, Northeastern University
Course website: https://neu-se.github.io/CS4530-Spring-2023/

https://neu-se.github.io/CS4530-Spring-2023/

Context: our class (CS4530) in one slide

• Upper-division undergraduate course usually taken in 3rd or 4th year

• Other than object-oriented design, this is it for SE in the curriculum presently

• Intended outcomes:

• Students will be able to define and describe the phases of the software engineering lifecycle
(requirements, design, implementation, testing, deployment, maintenance)

• Students will be able to explain the role of key processes and technologies in modern software
development.

• Students will be able to productively apply instances of major tools used in elementary SE tasks.

• Students will design and implement a portfolio-worthy software engineering project in a small
team environment that can be publicly showcased to recruiters.

Homework + Project Design Requirements

• Must remain relevant/maintainable over multiple semesters

• Must allow students creative freedom in designing/implementing project

• Must support students with mixed preparations: some familiar with… git, ,
VSCode, TypeScript, React… others not

• Must scale: Spring 2023 had 335 students spread across 7 sections, 3
instructors, 22 TAs

• Resulting structure: Staff-designed individual project (largely auto-graded),
then self-proposed group project

Covey.Town Overview

Fork Covey.Town
from Clowdr

Develop new
feature

Document
feature as

individual project

Student projects:
Propose, design,

implement new feature

(Once)

Staff responsibility
every semester

Use student feedback to
design new individual project

Accept student contributions
as pull requests

Spring 2021: Support multiple towns

Spring 2022: “Conversation Areas”

Fall 2022: “Viewing Areas”

Example student projects:

* Add mini-games

* Text chat features

* Customize the town/world

Individual Projects are Primarily Auto-Graded

• Functional implementation checked by tests

• Test cases checked by mutation analysis

• Code quality checked by linter and manual analysis

Sample rubric for one component Granularity of grading in GradeScope

Current Status and Open Challenges

• Moving beyond automated grading to reach automated tutoring

• Scaling to multiple campuses (our own Vancouver and Seattle campuses are
using this, Martin Kellogg at NJIT has started using this)

• Long-term sustainability of student deployment infrastructure (RIP, Heroku)

• Scaling development of individual project to new TAs

• Reusing old assignments as tutorial/teaching material

Sample Team Projects

Why only chat with everyone, when you can chat with some people?
https://github.com/neu-cs4530-s22/team-project-group-2i

Choose Different Conversation Types Send Private Messages

Design Decisions

● Separate socket messages sent to
add and edit for each type of
message

● Editing/Deleting/Reactions all
collected into single “edit” socket
message

● Blocking players logic handled in
frontend (like a personal filter)

Description

● Adds more chat features to
covey.town.

● Send messages exclusively in a
conversation area

● Directly message other users in the
town.

● React to messages with emojis
● Edit or delete your own messages
● Block annoying users

Future Work

● Seeing all messages that have
been sent before you join

● Sending files and images
● Adding custom commands to

towns to make chatting easier

https://deploy-preview-42--sad-hamilton-489dda.netlify.app/

Send messages and add reactions

Edit messages

Delete messages

Conversation area-specific chats

Block players

CS4530 Final Project: “Mini-Map”
Group 2H: Rivindu Wijedoru, Amy Min, Ian McLaughlin, Julia Martinez

Mini-Map Feature:

The smaller “mini-map” is always present in the top-right of the normal town perspective, which allows the player to
understand where they’re located in the town and where they are relative to other users.

Three details were adjusted to make it easier to read and understand: rendering players as dots with the user
blue-green and other players orange-brown, filtering text displayed on the town perspective to de-clutter the
mini-map, and changing conversation area colors based on their active state.

Large Map Feature:

The large map was included to provide a bigger view of the town, making additional features, such as teleportation,
easier to use. Again, labels and instructions were ignored in this camera view.

The large map can be toggled using the button on the bottom-left or by pressing the “M” key. A user teleports by
hovering the cursor over rooms, where a purple button appears for the user to click. The player is then transported
into the middle of the chosen room and is brought back into the normal town perspective.

Future Work:

1. To improve our features, we’d further simplify each of our maps. The maps would contain only information
essential to helping players navigate the town, ignoring further information on the town in the maps. For
example, the mini-map would be a solid-fillled shape of the town containing just dynamic components (players,
convo. areas) and simplified renderings of town landmarks helpful for distinguishing rooms from each other.

2. To make it easier to modify WorldMap.tsx in future tasks, we would refactor the CoveyGameScene, breaking it
down into multiple files to shorten the file.

3. Since the maps are intended to help players get a better sense of what’s going on in a town, we would add
information labels that would appear upon hover on the larger map to tell the player, for example, who each
player on the map is, and which what people are talking about in active conversation areas.

4. Abstract the teleport function to any town. When a player switches to the large-map view, they should be able to
select any room in the town and teleport to the clicked location as long as it’s an empty tile.

Large map view. The user is currently hovering their
cursor over the game room to teleport.

Left: Full view of the game screen with the mini-map in the top left corner. Foyer 6 is currently active with Amy and Rivindu
discussing final project deliverables.
Right: Enlarged view of the mini-map, displaying players as dots.

Design and Implementation:

Three major modifications to the Covey.Town codebase were made. The first consisted of adding a React button
component to allow for an immediately noticeable way to toggle between perspectives, or to switch between the
normal town and large-map views. This modification consisted of making additional React Context/Provider, state,
and hook to help provide access to and keep track of toggle values and updating App.tsx.

The second consisted of adding two map classes to represent each of the maps we added. Both map classes
extended the same Phaser Camera class, but each map had unique dimensions and zoom levels for the maps. The
map cameras were then instantiated in WorldMap.tsx’s CoveyGameScene, which allowed us to render the maps and
ignore and simplify cluttering information from the maps.

The third consisted of adding teleport buttons that would be displayed on the larger map upon mouse hover, which
would teleport the user to a set location in the selected room. The buttons were added to the CoveyGameScene,
which allowed us to ignore the buttons for all cameras except that of the large map.

Demo: https://vigorous-rosalind-641d14.netlify.app/
Source: https://github.com/neu-cs4530-s22/team-project-group-2h.git

CS4530 Final Project: “Tic Tac Toe”
Group 2E: Angela Hu, Elaina Phalen, Harini Boddu, Robin Lu

Our Feature: Tic Tac Toe
In the original release of Covey.Town, we noticed that users could only
have conversations with each other but not interact in any other way. We
thought adding a game would be a fun way for players to interact and get
to know one another. Our feature implements Tic Tac Toe where users
can play the classic Tic Tac Toe game with each other. Like conversation
areas, users will join a designated Tic Tac Toe area and begin a new game
when there are two players. Other users can join the game as spectators.
Players can see their Tic Tac Toe statistics and navigate to the leaderboard
area on the map to view the leaderboard with top scorers in the town.

Our Technology Stack & Design
We implemented the Tic Tac Toe feature in the existing Covey.Town codebase.
There is a Tic Tac Toe area and a leaderboard area, represented as “objects” in
the tilemap which can be easily manipulated using “Tiled.” These objects are
dynamically constructed when the map is loaded and rendered on the screen by
Phaser. When a player enters a Tic Tac Toe area and presses space, a
React/Chakra modal is displayed inviting them to start or join a game which is
input through the modal. When a game starts, a gameplay modal appears and
allows the players to take turns by clicking on Buttons. Moves are tracked by the
Tic Tac Toe Game backend and synced to each client using socket-io. The
player’s stats are added to the Social Sidebar which relies on a React hook to
receive updates. When a player enters the leaderboard area, a modal appears that
rerenders based on a React hook that receives updates about completed Tic Toe
Games from the backend.

Our continuous integration pipeline runs an automated test suite in the frontend
and backend components and deploys the site using Heroku and Netlify.

Demo & Source
Our demo site is available at https://group-2e-tictactoe.netlify.app and
our code at https://github.com/neu-cs4530-s22/team-project-group-2e

Future Work
Ideally, there would be more than one Tic Tac
Toe game going on at once. We would have
multiple game areas to play tic tac toe, similar
to how there are multiple conversation areas.
Currently, our design runs one game at a
time, but the town and map store a list of
games, so we can have multiple games run
simultaneously in the future.

Additionally, we would like to add to the
spectator feature to allow spectators to send
messages and emotes. These messages and
emotes will be visible to the game players and
all spectators.

Lastly, we would like to add the ability for
players to play again from the “end of game”
modal. Currently, they have to exit the area
and re-enter which is not efficient if two
players want to play a series of games.

The Tic Tac Toe area and
leaderboard area are

labeled with text boxes.
In this screenshot, Harini

and Angela are playing
Tic Tac Toe against one

another, and Elaina is
viewing the leaderboard.

The current player (O) is
playing against Robin (X). It’s

currently X’s turn. Both
players have placed moves

which are shown in the
gameplay modal.

The leaderboard modal with the
town’s top 5 players and their

respective stats
A player’s Tic Tac Toe stats

in their Social Sidebar

We implemented the viewing area feature in the existing Covey.Town codebase. There exists a single
viewing area represented as an “object” in the tilemap. The object is dynamically constructed when the
map is loaded, and rendered on the screen by Phaser.
When a player enters a “new” viewing area, the message “Press spacebar to enter the movie!” is
displayed via a Phaser text game object. A React/Chakra modal then appears, with a React/Chakra form
component with a submit button embedded within it, inviting the user to enter a YouTube video URL.
Once the user submits a valid URL(our MVP supports YouTube videos only), a video appears with a Once the user submits a valid URL(our MVP supports YouTube videos only), a video appears with a
pause/play button built using a Chakra button component and video progress bar built using a Chakra
slider component. The embedded video is built using a ReactPlayer component, a react component which
renders a video embed.
These viewing area components are defined in the ViewingArea directory in the frontend, instantiated These viewing area components are defined in the ViewingArea directory in the frontend, instantiated
within WorldMap, and each have hooks linking user interaction to the video status in the backend. The
video status is tracked by the CoveyTownController, represented as a VideoStatus type, and synced to
each client using socket-io. Any interaction with the viewing area that involves a request to change the
status of the video (new url, pause status, elapsed time of the video) will be validated, updated in the
backend, and then the change is propagated to every client in the same server. The
onVideoStatusUpdated listener is called within updateVideoStatus by the CoveyTownController to
propagate any changes made to the video status.
Once a VideoStatus is set in the CoveyTownController, it will automatically increment the video’s elapsed
time by one second so long as the VideoStatus is not in a paused state and the elapsed time is not equal
to the length of the video.

In a real life communal space, people often congregate not only to chat, but also to watch
movies, TV shows, and other videos together for the purpose of entertainment, sharing
learning content, or showing off a video created by someone in the space. Since
Covey.Town is a place for people to commune virtually and converse, it follows naturally
that Covey.Town should support communal viewing parties as another way to interact and
share.

It is for these reasons that we developed the Viewing Area feature for our term project. The It is for these reasons that we developed the Viewing Area feature for our term project. The
Viewing Area is a part of the map that users can enter and watch a YouTube video of their
choosing together, in synchrony (at the same time). Previously, if a covey.town user wanted
to share a video with other users in their server and watch it together, they would have to
tell the other viewers to open another tab in their browser and sync up the videos manually,
or use another platform which supports synchronous video watching. Now, users can enter
a covey.town, walk over to the conference room labeled Viewing Area, type and submit a
YouTube video url, and enjoy watching the video synchronously with the other users in the
Viewing Area on the same covey.town server. If the video is paused, changed, or fast
forwarded or rewinded this change will be reflected in real time to everyone.

CS 4530 Final Project: “Viewing Area”

Our Feature: Viewing Area Technology Stack & Design

When brainstorming different ways to implement a viewing area, we
initially envisioned support for any kind of free, publicly accessible
video url. To ensure completion of an MVP by the project deadline,
we focused on solely supporting YouTube video urls. One decision
made along the way was choosing a video embed component that
supported only YouTube videos. This among a select few other
places was where there was YouTube specific hard-coding in our
design. We learned late in the process of a more widely used video
embed component that supported any video url, and was easier to
work with, and we decided to switch out the YouTube video
component with this more general component. Future work could
include extending this abstraction to other parts of our design that
currently are specific to YouTube, and generalizing them to any video
url.

In the future we’d also like to include a full search functionality for In the future we’d also like to include a full search functionality for
videos rather than making a user supply a link to get the video to
start playing. This can use the YouTube API, or the API of other video
websites, to fetch video suggestions based upon a user defined
string. This would allow the user to stay in covey.town fully without
ever having to have another window open to actually fetch the links
to the videos they want.

Future Work

Group 2M: Aamir Islam, Jonathan Maduro, Jonathan Ju, Petros Papadopoulos

Users enter a Viewing Area just as they

would a Conversation Area. If they click the

space bar, it opens a modal

The modal open and playing a video. The

video and timestamp are the same for

everyone

The modal open with a paused video. It is

paused for everyone else in the town too

Try it out: viewing-area.netlify.app Demo: https://youtu.be/mGJbldbISh0

