
Andy
An educational tool to assess test code

https://github.com/cse1110/andy

Teaching software testing is fundamental!

● It is an important skill to learn
● Not a lot of universities teach it.

○ In most of them, testing is just a lecture in a SE course
○ Delft has a dedicated testing course!

● Lack of tools to support testing education!
○ How to make sure the student wrote the "right tests"?

Andy!

student

submits test code

given production
code (assignment)

Andy

compile run tests coverage

mutationmeta testsstatic analysis

given rubric
(hidden from the student)

detailed
assessment

Some quick explanation of the assignment

Reference to where we got inspiration from

Plain old Java code

Javadoc that may
complement the
requirement

How much each part contributes
to the final assessment

Meta tests

The name of the
class under test

Requires mocking!

Static analysis to
identify whether
mocks were used
properly!

It's demo time!

This is what the initial page
looks like to students
(besides the draft folders)

Exercises are divided by
week

Inside a coding assignment
(this is the method they need
to test)

You write your tests in the
Solution tab.

Multiple running options

You see the results!

Fine-grained analytics per
exercise (useful to grade the
exam)

Challenges in building such a tool

● Make it performant
○ First version would simply do "mvn test coverage pitest static-analysis" and the parse the

results. Too slow.
○ Makes native use of JaCoCo, Pitest and JUnit.
○ Around 2 seconds in my M1, around 5 seconds in AWS lambda. More in complex PBT

assignments.
● Too much classloading magic and shadowing

○ All these tools bring their own classloaders, putting all of them together was tricky
○ Pitest shadows JUnit, it's hard to bump dependency versions.

● Create a DSL for configuration that's not too hard to use
○ First version was a simple text file with conventions. Became too hard to express everything.
○ Java version is a bit better although requires some knowledge to use it.
○ Trying YAML (as anyone, I'm sure we'll regret that soon enough)

● The Maven plugin
○ Due to the so much magic we do, implementing a Maven plugin was harder than we thought.
○ Things would fail, classes wouldn't be found, etc…

Ongoing and next steps

● Support Selenium tests
○ Unit tests, mocking, property-based tests, SQL tests, Selenium tests.

● Analytics
● Performance improvements
● Make it easy for others to adopt

○ You can use WebLab for 5 euros per student
○ Maven plugin
○ AWS lambda if you want to embed in your IDE
○ Github, help me!!! (Challenge: get approved by Delft for exams)

● Write a paper!
○ I leave academia, but academia doesn't leave me!

Based on my book!

https://www.effective-software-testing.com/

TU Delft education fellow

https://www.tudelft.nl/teachingacademy/get-inspired/education-fellows

Thanks to the entire team!

● Martin Mladenov, the hand!
● Jan Warchocki
● Paul Hübner
● Florena Buse
● Thijs Nulle
● Diman Uzunov
● Nadine Kuo
● Teodor Oprescu
● Yoon Hwan Jeong
● Wouter Polet (earlier versions)
● The WebLab development team

Why is it called Andy?

It is a tribute to Dr. Andy Zaidman, Professor in Software
Quality and Director of Studies at TU Delft.

Andy is a strong proponent of testing. Students meet Andy
in their first quarter. Andy teaches them introduction to
programming. In weeks 3-4 (!!), Andy already shows them
JUnit!

https://azaidman.github.io/

● Andy: https://github.com/cse1110/andy
● Manual: README in Andy's repository

Questions?

Maurício Aniche

mauricioaniche@gmail.com

@mauricioaniche

Give us a !

https://github.com/cse1110/andy
mailto:mauricioaniche@gmail.com

